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It is shown that the longitudinal correlation function f is asymptotically propor- 
tional to r -3  as r---,oo and the energy spectrum function is asymptotically 
proportional to x 2 as g __, 0 if and only if 0 <  (( f u d3x). u ) <  00. Moreover, the 
latter finiteness condition is shown to be essentially equivalent to ( ( f y . u  d3x) 2) 
< oo for nonstochastic y E L2(R3). Confirmed by recent experimental measure- 
ments, the large r dependence f cc r -3  is concomitant with an O ( r - 6 )  = O ( f  2) 
fall-off of the viscous force term in the K h r m ~ - H o w a r t h  equation. 

1. BASIC RELATIONS 

Consider isotropic homogeneous incompressible fluid turbulence in a 
Galilean frame such that the mean velocity vanishes. Isotropy, homogeneity, 
and incompressibility imply that the two-point correlation tensor has the 
generic forms (Batchelor, 1960) 

Rjk(r, t)------( uj (x', t)uk(x",t)) 

[( r ~ , ) ~  _ _ _ _ _  
= u  2 f + g ~  1  rjr ] 

2r 

= f E(r't)(sjk-tcJX------~k)ei'~'rd3x47rx 2 x 2 (1) 

where u 2 = U 2(t), r------ x' -- x", r -- I r[, and the longitudinal correlation func- 
tion f =  f(r, t) is normalized to give f(0, t ) - -1 .  The energy spectrum func- 
tion E(x, t) is nonnegative for all wavenumbers tr in the final member 
of (1). 
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Suppose that the global expectation value 

exists as a finite positive quantity. Then it follows immediately from (1) that 

3f )47rr2 dr cY'C(t)= f Rjj(r,t)d3r = U2 fo~(3f + r-~r 

=4~ru 2 lim (r3f)=a~r2[E(x,t)/K2]~= o (3) 

and hence one obtains (Rosen, 1981) 

f ( r , t ) - l ( t ) r  -3 a s r ~ o o  (4) 

E ( x , t ) -  (47r2)-lglL(t)x 2 a s k s 0  (5) 

where 1(t)=~(47ru2) - l~ ( t ) .  
The complementary asymptotic forms (4) and (5) are in agreement with 

experimental measurements and have also appeared in previous theory. 
Energy spectra with E(K, t)cc K 2 for small x were found experimentally by 
Stewart and Townsend (1951) [see their Figure (10)]. The latter experimental 
evidence was discussed in a general theoretical context by Birkhoff (1954). 
For statistically steady turbulent fluid motion maintained by statistically 
steady random impulsive forces, Saffman (1967) obtained (4), (5) with 
I( t )~const .  Most recently, the measurements of Frenkiel et al. (1979) 
support the asymptotic dependence f(r ,  t)cc r -3 for large r (see Appendix). 

Hence, the postulate that (2) exists as a finite positive quantity implies 
a large-scale turbulence structure consistent with experiments. As a statisti- 
cal property or postulate, however, the finiteness of (2) is complicated 
because the left side is asymmetric in u and the dot product is indefinite in 
sign over the ensemble. The principal purpose of the present communication 
is to show that the finiteness of (2) is essentially equivalent to the finiteness 
of the global expectation value displayed in (10) below. Stated precisely, 
(10) guarantees validity of the asymptotic forms (4), (5) with 0~  < eSq,(t)< oo. 
Compared to (2), the global expectation value in (10) is more desirable 
conceptually, for it is the positive-definite square of a real scalar integral. 
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2. EQUIVALENCE T H E O R E M  

Associated with the two-point correlation tensor (1) is the eigenvalue 
equation 

fR j , (x ' -x" ,  t)r d3x" = XCj(x') (6) 

in which ~'(x) is a complex-valued vector field and ~ -- ~(t) is a real scalar 
function of t that depends on R i k and ~'. By employing the final member of 
(1) and making use of the convolution theorem for Fourier integrals, (6) is 
readily solved to yield the eigenfunctions and eigenvalues 

if(x) = a e  ib'x ~ =2~rZ[E(x, t)/xz]l,=lbl (7) 

in which the real constant parameter vectors a, b are perpendicular (a. b = 0) 
but otherwise arbitrary. In addition to (7), the eigenvalue equation (6) also 
admits longitudinal vector eigenfunctions 

~'(x) = b e  m'x with ?~ = 0  (8) 
f ,  

Since all solutions to (6) are either of the form (7) or (8), the eigenvalue 
spectrum of Rjk(r,t)  is compact [i.e., 0~<?~<hm~x(t)] if ?~m~x(t)= 
21rZmax~(E(x, t)/K 2) is finite. Because E(K, t) is finite or zero for all x, 
hma ~ is likewise finite if and only if [E(x,t)/x2]~=o=--(41r2)-l~ is 
finite or zero. It then follows from elementary Hilbert-space theory (e.g., 
Akhiezer and Glazman, 1961) that the real symmetric tensor kernel Rjk(r , t) 
is bounded, 

fRjk(x'--x",t)yj(x')Yk(X")d3x'd3x"<~m~(t)f[y(x)[2d3x (9) 

for any real y(x) E L2(R3). Conversely, if 

<,o) 

is finite, then 9]'6(t)=4~2[E(ir t)/ic2]x=0 must be finite or zero. Although 
the GYL(t)=0 special case is not precluded by the finiteness of (10), the 
latter condition is otherwise equivalent to (2). Thus the finiteness of (10) 
implies the asymptotic forms (4), (5) with 0~< 9 L ( t ) <  oo. 
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3. DYNAMICAL INTERPRETATION 

For freely decaying Navier-Stokes isotropic homogeneous turbulence, 
one has the K&rmhn-Howarth (K~tm&n and Howarth, 1938) equation 

40) 
Ot + --r -~-;r f + K (11) 

in which v is the constant kinematic viscosity and K = K(r, t) is defined 
implicitly by the triple-velocity correlation 

(uk(x+r ,  t)uj(x, t)uk(x, t ) )  =�89 (12) 

Suppose that f is analytic in r -~ about r = oo and has the asymptotic 
dependence shown in (4) [as exhibited, for example, by (AI) below]. Then 

f ( r , t ) = I ( t ) r - 3 + O ( r  -4) (13) 

and (11) becomes 

a-~-(u2f )=O(r-6)4- K 
at 

(14) 

by substituting (13) into the viscous force term. Conversely, the asymptotic 
dependence (13) follows from the requirement that f be analytic in r-1 and 
that the viscous force term in (11) be of O(r-6). Compatible with the 
finiteness of (2) and (10), the O(r -6) = O(f  2) fall-off of the viscous term in 
(11) is a dynamical effect related to the small-scale structure and the 
existence of the Taylor microscale length of order (vt) 1/2. 

Finally it should be noted that (13), (14), and the definition below (5) 
yield 

K = (4~r)-' [dg]L(t)/dt] r -3 + O(r -4 ) (15) 

The general dynamics of decay (e.g., Rosen, 1980) indicates that 63L(t) 
decreases monotonically with increasing t, in the same manner as (but not 
necessarily proportional to) u 2 = u2(t). Hence, the leading term in (15) does 
not vanish in general, and K is therefore of O(r-3) = O(f )  for freely 
decaying Navier-Stokes turbulence. 
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TABLE I. Comparison of Experimental Values for the Longitudinal Correlation Function 
Obtained by Frenkiel et al. (1979) 

[Their Figure 2 with the Taylor (1938) approximationf ~ R(r/U)] 
and the Values Given by the Empirical Relation (A I ) 

r/M 0 0.10 0 .20  0 .30  0 .40  0.60 1.00 1.60 2 .00  2 .40  2 .80  3.20 

f[~ R(r/U)] 1 0.80 0 .65  0 .52  0 .45  0 .32  0 .19  0 .09  0 .06  0 .04  0 .03  0.02-0.03 
f[by(Al)] I 0.800 0.651 0.536 0.447 0.320 0.180 0.090 0.061 0.043 0.032 0.024 

A P P E N D I X .  E M P I R I C A L  F O R M  O F  T H E  L O N G I T U D I N A L  
C O R R E L A T I O N  F U N C T I O N  F O R  L A R G E  R E Y N O L D S  

N U M B E R  G R I D - G E N E R A T E D  T U R B U L E N C E  

For  grid-generated turbulence at Reynolds  number  U M / u  from 12,800 
to 81,000 and typical turbulence levels u / U ~ . 0 2  in air and water, Frenkiel 
et al. (1979) have observed the longitudinal correlation funct ion to be 
independent  of t and to depend exclusively on the dimensionless geometri-  
cal ratio ( r / M ) .  This beautiful universality is expressed by the empirical 
relation (Rosen, 1981) 

f ( r ,  t ) =  [1 + 0 . 7 7 0 ( r / M ) ] - 3  (A1) 

as shown by the compar ison in Table I. Clearly (A1) is consonant  with the 
asymptot ic  dependence in (4) for large r. Moreover,  it follows f rom (A1) 
that the prefactor  in (4) I ( t ) = 2 . 1 9 M  3 is identically constant ,  as in the 
theoretical model of Saffman (1967). 
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